Cranial neural crest emergence and migration in the Mexican axolotl (Ambystoma mexicanum).
نویسندگان
چکیده
The timing and pattern of cranial neural crest cell emergence and migration in the Mexican axolotl, Ambystoma mexicanum, are assessed using scanning electron microscopy (SEM). Cranial neural crest cells emerge and begin to migrate at the time of neural fold closure and soon form three distinct streams. The most anterior (mandibular) stream emerges first, at the level of the mesencephalon. Cells in this stream migrate rostroventrally around the optic vesicle. The second (hyoid) and third (branchial) streams emerge in close succession at the level of the rhombencephalon and extend ventrolaterally. Cells forming the hyoid stream migrate rostral to the otic vesicle, whereas the branchial stream divides into two parallel streams, which migrate caudal to the otic vesicle. At later stages (stage 26 onwards) the cranial neural crest cells disperse into the adjacent mesoderm and can no longer be followed by dissection and SEM. The pattern of cranial neural crest emergence and migration, and division into migratory streams is similar to that in other amphibians and in the Australian lungfish (Neoceratodus forsteri). Emergence of crest cells from the neural tube, relative to the time of neural tube closure, occurs relatively late in comparison to anurans, but much earlier than in the Australian lungfish. These results establish a morphological foundation for studies in progress on the further development and fate of cranial neural crest cells in the Mexican axolotl, as well as for studies of the role of cranial neural crest in cranial patterning.
منابع مشابه
Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.
The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connecti...
متن کاملAmphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns.
The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the verteb...
متن کاملCombined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl.
Cranial neural crest cells migrate in a precisely segmented manner to form cranial ganglia, facial skeleton and other derivatives. Here, we investigate the mechanisms underlying this patterning in the axolotl embryo using a combination of tissue culture, molecular markers, scanning electron microscopy and vital dye analysis. In vitro experiments reveal an intrinsic component to segmental migrat...
متن کاملEGF, epithelium and Cardiac neural crest in the axolotl 269 The cardiac neural crest in Ambystoma mexicanum
To establish whether a region of the cranial neural crest contributes cells to the developing heart of Ambystoma mexicanum (axolotl), as it does in many other vertebrates, we constructed a fate map for the neural crest in late neurula stage (stage 19-20) embryos. The fluorescent vital dye, DiI, was used as the lineage label. The various regions of the cranial neural folds were identified in rel...
متن کاملDual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum).
The impressive morphological diversification of vertebrates was achieved in part by innovation and modification of the pharyngeal skeleton. Extensive fate mapping in amniote models has revealed a primarily cranial neural crest derivation of the pharyngeal skeleton. Although comparable fate maps of amphibians produced over several decades have failed to document a neural crest derivation of vent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zoology
دوره 105 3 شماره
صفحات -
تاریخ انتشار 2002